

Sales office South Europe:

ELANTAS Italia S.r.I. Strada Antolini n° 1 loc. Lemignano 43044 Collecchio (PR) Italy Tel +39 0521 304777 Fax +39 0521 804410 EEMEurope.ELANTAS@altana.com info.elantas.italia@altana.com www.elantas.com

A member of **O ALTANA**

to

	Resin	Hardener	Mixing ratio by weight					
	EC 152	W 152 HR	100:30					
		W 152 MR	100:30					
Application:	tion: High performance composite parts of small and medium size. Manufacturing of structural parts for boats, model airc racing vehicles, sport components.							
Processing:	Manual lamination at atmospheric press hardeners can be blended in all proport traditional systems, this one also presents W 152HR: High reactivity. For small compo	sure for glass, carbon or kevlar fibe ions to adjust the reactivity of the sy a high capability to post-cure with a mo nents or as accelerator for other harde	r tissue. Room temperature curing. The stem to the specific needs. Compared to oderate heat transfer.					

W 152MR: Medium reactivity. Standard hardener. W 152LR: Medium and large size components. (see EC152/W152LR).

W 152XLR: Large size components. (see EC152/W152XLR).

SYSTEM SPECIFICATIONS

Resin										
Viscosity at: 25°C			IO-10-50 (EN13702-2)	mPas		1.200) 1.800			
Hardener W 152 HR	1									
Viscosity at:		25°C	IO-10-50 (EN13702-2)	mPas						
Gelation time		25°C	IO-10-52a (UNI 8701)	min		15	25			
Hardener W 152 MR	ł									
Viscosity at:		25°C	IO-10-50 (EN13702-2)	mPas		30 60				
Gelation time		25°C	IO-10-52a (UNI 8701)	min		50	60			
		TYPICAL	SYSTEM CHARACTERI	STICS						
Resin										
Resin Colour						Pale/	yellow			
Density resin 25°C			IO-10-51 (ASTM D 1475)	g/ml	1,13 1,17					
Hardeners					W 15	2 HR	W 15	2 MR		
Hardener Colour					Pale/y	/ellow	Pale/y	ellow		
Viscosity at: 25°C			IO-10-50 (EN13702-2)	mPas	30	80				
Density 25°C			IO-10-51 (ASTM D 1475)	g/ml	1,02	1,06	0,94	0,98		
Processing Data										
Mixing ratio by weight			for 100 g resin	g	100	:30	100	:30		
Mixing ratio by volume			for 100 ml resin	ml	100	:33	100	:36		
Pot life 2	5°C	(50mm;200ml)	IO-10-53 (*)	min	12	17	35	45		
Exothermic peak 2	5°C	(50mm;200ml)	IO-10-53 (*)	°C	225	250	210	235		
Initial mixture viscosity a	at:	25°C	IO-10-50 (EN13702-2)	mPas	400	600	400	600		
Gelation time		25°C (1mm)	IO-10-88	h	2	3	5	7		
Demoulding time	25	°C (15ml;6mm)	(*)	h	4	6	6	8		

High modulus un-filled epoxy system. The curing agent should be selected according to the application. The curing at room temperature plus the post-curing at moderate temperatures (50-60°C) allows high performance. Further stabilization at **Description:** higher temperatures improves the thermal resistance of the components.

EC 152

TYPICAL CURED SYSTEM PROPERTIES

Properties determined on specimens cured: 24 h TA + 15 h 60°C

		W 152	2 HR	W 152 MR			
Colour			Pale y	ellow	Pale yellow		
Machinability			Exce	llent	Excellent		
Density 25°C	IO-10-54 (ASTM D 792)	g/ml	1,08	1,12	1,08	1,12	
Hardness 25°C	IO-10-58 (ASTM D 2240)	Shore D/15	85	89	85	89	
Glass transition (Tg)	IO-10-69 (ASTM D 3418)	°C	70	76	85	90	
Maximum Tg	IO-10-69 (ASTM D 3418)	°C	77	83	105	110	
Water absorption (24h RT)	IO-10-70 (ASTM D 570)	%	0,10	0,20	0,15	0,25	
Water absorption (2h 100°C)	IO-10-70 (ASTM D 570)	%	0,60	0,70	0,55	0,65	
Max recommended operating temperature	(***)	°C	75		95		
Flexural strength	IO-10-66 (ASTM D 790)	MN/m²	120	130	120	130	
Maximum strain	IO-10-66 (ASTM D 790)	%	4,5	6,5	5,0	7,0	
Strain at break	IO-10-66 (ASTM D 790)	%	7,0	9,0	6,0	8,0	
Flexural elastic modulus	IO-10-66 (ASTM D 790)	MN/m²	3.600	4.000	3.400	3.800	
Tensile strength	IO-10-63 (ASTM D 638)	MN/m²	67	75	65	75	
Elongation at break	IO-10-63 (ASTM D 638)	%	6,0	8,0	6,0	8,0	
Compressive strength	IO-10-72 (ASTM D 695)	MN/m²	88	98	95	105	

IO-00-00 = Elantas Italia's test method. The correspondent international method is indicated whenever possible. nd = not determined na = not applicable RT = TA = laboratory room temperature (23±2°C)

1 mPas = 1 cPs 1MN/m2 = 10 kg/cm2 = 1 MPa Conversion units:

(*) for larger quantities pot life is shorter and exothermic peak increases

(**) the brackets mean optionality (***) The maximum operation The maximum operating temperature is given on the basis of laboratory information available being it function of the curing conditions used and of the type of coupled materials. For further possible information see post-curing paragraph.

PRODUCT INFORMATION

C ELANTAS

EC 152

Instructions:	Verify and when necessary, homogenize the components before use. Add the appropriate quantity of hardener to the resin, mix carefully. Avoid air trapping. For the surface preparation (mould or model) refer to the release agents data sheet.								
Curing / Post- curing:	Post curing is always advisable for RT curing sy properties, although, this system is able to rea traditional systems. If post-cured at a modera Curing and post-curing should be carried out be cure the tool increasing gradually 10°C/hour. Users should evaluate the best conditions of o size components decrease the thermal gradien and composites, post cure on the jig.	vstems in order to stabilize the ach (already at room temperatu ate temperature (60°C) it is p efore using, the mould as a fun curing or post-curing dependir nt and increase the post-curin	component and to reach the ure) a thermal resistance his ossible to obtain a good the iction of the required therman ng on the component size a ig time. In the case of thin	e best mechanical gher than those of lermal resistance. al resistance. Post and shape. For big layer applications					
Storage:	Epoxy resins and their hardeners can be stored for two years in the original sealed containers stored in a cool, dry place. The hardeners are moisture sensitive therefore it is good practice to close the vessel immediately after each use.								
Handling precautions:	Refer to the safety data sheet and comply with r	regulations relating to industria	l health and waste disposal						
		emission date:	July	2008					
		revision n° 01	March	2009					

The information given in this publication is based on the present state of our technical knowledge but buyers and users should make their own assessments of our products under their own application conditions.

pag.4/4

EC 152

Systems properties in wet state **Reactivity Profiles** (200ml system volume, resin / hardener mixing ratio 100:30 at 25° C in air) 260 240 220 EC152 / W152HR I 200 EC152 / (W152XLR/HR 70:30) I 180 EC152 / W152MR Tem perature (° 160 I 140 EC152 / (W152XLR/HR 80:20) 120 EC152 / (W152XLR/HR 90:10) 100 EC152 / (W152XLR/HR 99:1) 80 60 EC152 / W152LR 40 EC152 / W152XLR 20 80 90 100 110 120 130 140 150 160 170 180 40 60 0 10 20 30 50 70 Time (min.)

Suggestions for the proper use of the systems with vacuum bag process 2 mm thickness

	EC152/W152 HR			EC152/W152 MR			EC152/W152 LR				EC152/W152 XLR					
	15°C	20°C	25°C	30°C	15°C	20°C	25°C	30°C	15°C	20°C	25°C	30°C	15°C	20°C	25°C	30°C
Maximum time before vacuum application (h)	32		1,5	1	74	3		2	9	8	7	5	13	10	8	6
Gelification time (h)	4-7	n.d.	2-3	n.d.	11-15	n.d.	5-7	n.d.	16-21	n.d.	10-13	n.d.	22-30	n.d.	13-16	n.d.
Minimum time for vacuum release (h)	8	5	3,5	2	16	9	7,5	6,5	24 1	8	15 1	2	40 2	6	20	16
Demoulding (h)	9	6	4,5	3	20	12 1	0	8	44 3	6	30 2	4	110	60	42	30

N.B. The reported values are derived from lab tests and from the application experience. They must be considered indicative because they are related to the specific size and shape of the components. Buyers and users should make their own assessments of our products under their own application conditions.

The laminate has been obtained by hand lay-up of a glass tissue of $300g/m^2$ (Type raso 8) impregnated with the different systems until a final thickness of 5 mm has been obtained.

The test specimens have been prepared according to ASTM D2344 and before testing they were stabilized at 50°C for 16 hours.